Fault-Tolerant Logical Gate Networks for CSS Codes
نویسندگان
چکیده
Fault-tolerant logical operations for qubits encoded by CSS codes are discussed, with emphasis on methods which apply to codes of high rate, encoding k qubits per block with k > 1. It is shown that the logical qubits within a given block can be prepared by a single recovery operation in any state whose stabilizer generator separates into X and Z parts. Optimized methods to move logical qubits around and to achieve controlled-not and Toffoli gates are discussed. It is found that the number of time-steps required to complete a fault-tolerant quantum computation is the same when k > 1 as when k = 1.
منابع مشابه
Quantum Error Correcting Codes
This thesis deals with quantum error correcting codes. In first two chapters necessary introduction to quantum computation and classical error correction is presented. Previous results on construction of quantum error correcting codes are presented in the third and fourth chapter. Mainly Calderbank-Steane-Shor (CSS) codes and stabilizer codes are discussed together with the introduction to codi...
متن کاملUniversal Fault-Tolerant Gates on Concatenated Stabilizer Codes
It is an oft-cited fact that no quantum code can support a set of fault-tolerant logical gates that is both universal and transversal. This no-go theorem is generally responsible for the interest in alternative universality constructions including magic state distillation. Widely overlooked, however, is the possibility of nontransversal, yet still fault-tolerant, gates that work directly on sma...
متن کاملFault-tolerant logical gates in quantum error-correcting codes∗
Recently, Bravyi and König have shown that there is a trade-off between fault-tolerantly implementable logical gates and geometric locality of stabilizer codes. They consider locality-preserving operations which are implemented by a constant-depth geometrically-local circuit and are thus fault-tolerant by construction. In particular, they shown that, for local stabilizer codes in D spatial dime...
متن کاملStep-by-step magic state encoding for efficient fault-tolerant quantum computation
Quantum error correction allows one to make quantum computers fault-tolerant against unavoidable errors due to decoherence and imperfect physical gate operations. However, the fault-tolerant quantum computation requires impractically large computational resources for useful applications. This is a current major obstacle to the realization of a quantum computer. In particular, magic state distil...
متن کاملFault-tolerant quantum computation with asymmetric Bacon-Shor codes
We develop a scheme for fault-tolerant quantum computation based on asymmetric Bacon-Shor codes, which works effectively against highly biased noise dominated by dephasing. We find the optimal Bacon-Shor block size as a function of the noise strength and the noise bias, and estimate the logical error rate and overhead cost achieved by this optimal code. Our fault-tolerant gadgets, based on gate...
متن کامل